London Meed Primary School Progression in Calculation Policy March 2024

To be reviewed annually
Next review: March 2025

Prior to moving children to written methods, they need to:

- Understand the number system
- Be fluent with basic number facts
- Understand the = symbol
- Look for patterns and make connections
- Have a good grasp of mental strategies
- Be confident using physical resources and pictorial representations of key concepts to solve problems and explain their reasoning

When children move to written methods, they need to think:

- What will the answer be roughly?
- Can I work out the answer in my head?
- What can I use to help me (physical resources, pictures, diagrams)?
- Do I need a formal written method?
- Does that answer my question?
- Does it make sense?
- Can I check my answer?

Purpose of the Policy:

- To ensure teachers, parents and carers are aware of the strategies taught in each year group and how these strategies support children in performing mental and written calculations. Pupils should not be moved on through the methods until they have a secure understanding of how to use them independently and confidently, including concrete and pictorial representations.
- To enable teachers to identify appropriate concrete apparatus and pictorial representations to help develop and secure children's understanding.
- To support parents and carers in reinforcing learning at home.

Aims of the policy:

- To ensure consistency and progression in our approach to calculation.
- To explain the development from concrete experiences through to mental jottings, mental strategies and on to written methods.
- To develop children's fluency in the use of written methods.
- To ensure that children can efficiently and independently use concrete resources.
- To ensure that children develop an efficient and reliable formal written method of calculation for all operations.
- To ensure that children can use these methods accurately with confidence and understanding.
- To ensure children are clear about the correct way of recording the written formal methods.

How to use this policy:

- Teachers to use the policy as the basis of their planning while ensuring the previous or following years' guidance is referred to in order to allow for personalised learning.
- Always use Assessment for Learning to identify suitable next steps in calculation for groups of children.
- If, at any time, children are making significant errors, return to the previous stage in calculation to identify and rectify their misconceptions.
- Always introduce a new concept/calculation using suitable resources, models and images to support children's understanding of the calculation and place value, as appropriate.
- Encourage children to make sensible choices about the methods they use when solving problems.
- Encourage children to use correct mathematical terminology and speak in full sentences.

less than ${ }_{\text {Y }}$ difference	between - Subtraction -		minus subtract
	Year 4	Year 5	Year 6
Continue using the number line. Expanded subtraction using concrete objects and pictorial representations. Use Base 10 and place value counters to show one exchange before moving onto subtractions with two exchanges. Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. Move to written representations.	Continue using the number line method (2,3 and 4-digit numbers) and extend it to decimal numbers in real-life contexts. $£ 1.60$	Compact subtraction involving numbers larger than 4 digits and decimal numbers up to 2 decimal places. $\begin{array}{cc} 3,265-1,897 & =1,368 \\ 3 & \text { Check: } \\ 3{ }^{1} 5^{\prime} / 5 & 1368 \\ -1897 \\ \hline 1368 & \frac{1897}{3265} \\ \hline 111 \end{array}$	Compact subtraction involving large numbers and decimal numbers up to 3 decimal places. $\begin{gathered} 493,210-284,709=208,501 \\ \text { Check: } \\ 49^{8 / 21} 21^{1} 0 \quad \begin{array}{c} 208501 \\ -284709 \\ \hline 208501 \end{array} \frac{284709}{493210} \\ \hline 1 \end{gathered}$
	Compact subtraction involving ThHTO with no exchange, moving to ThHTO with exchange from tens, then hundreds, then thousands.	$\begin{array}{r} 365.168 .89 \\ +297.39 \\ \hline 165.89 \\ \hline+297.39 \\ \hline \frac{463.28}{11} 1 \end{array}$ Model efficient strategies for subtraction.	$825.304-746.985=78.319$ Check: $8^{\prime} 2^{\prime 4} 5.3^{29} 9^{\prime} 4$ 746.985 -746.985 078.319 +78.319 $\frac{825.304}{11.11}$
	Then, move onto subtracting 4-digit numbers with more than one exchange. $5347-1879=3468$	$200,000-158,436=41,564$ $200.000 \xrightarrow{-1} 199.999$	Continue using the number line to model strategies for efficient mental calculations.
Compact subtraction: HTO with no exchange, moving onto HTO with exchange from tens, then hundreds. When secure, move onto subtracting 3digit numbers with more than one exchange.	$\begin{aligned} & \begin{array}{c} \text { Check: } \\ 3468 \\ 5 * 7 \end{array} \\ -1879 & +1879 \\ \hline 3468 & \frac{5347}{11} \end{aligned}$	- ${ }^{-1} \underline{\underline{041.564}}$	

lots of groups of multiply \mathbf{x} Multiplication \mathbf{x} repeated addition times by product

Recall and use multiplication and division facts for 3,4 and 8 times tables.

Understand multiplication as scaling.

The giraffe is twice as tall as the elephant.

Before moving onto TO x O , the children need to be able to multiply a multiple of 10 by a one-digit number.
e.g. $20 \times 3=60 \quad 40 \times 5=200$

Show the link with arrays to first introduce the grid method (TO x O).

Moving to expanded method TO x O within Year 3 multiplication tables.

H	- ${ }^{\text {T }}$	\bigcirc	Short multiplication		Long multiplication	
	000	(1)	H T	0		32
	$\bigcirc \bigcirc$	(1)	3	2	\times	5
	$\bigcirc \bigcirc$	(1) (1)	\times	5		1 5
	$\bigcirc \bigcirc$	(1) (1)	16	0		60
	\bigcirc		11			

Use place value counters and dienes to model exchanging.

By the end of Year 4, children should be fluent in all times tables facts up to 12×12, including multiplying by 0 and 1 . They learn to multiply 3 numbers together, using the associative law of multiplication (no matter how the numbers are grouped, the answer will always be the same).

Grid method
Partitioning

$$
\begin{aligned}
& 26 \times 7=182 \\
& \begin{array}{|c|c|c|c|}
\hline x & 20 & 6 & \text { Total } \\
\hline 7 & 140 & 42 & 182 \\
\hline
\end{array}
\end{aligned}
$$

$27 \times 5=100+35=135$
Move onto expanded method, then compact.

$$
123 \times 4=492
$$

Introduce the distributive law (multiplying a number by a group of numbers added together is the same as doing each multiplication separately).

Multiply numbers up to 4 digits by a one- and two-digit numbers, using the grid method and the formal written method. Children to practise multiplying and dividing whole numbers by 10 , 100 and 1000 mentally.
$24 \times 12=\mathbf{2 0 0}+\mathbf{4 0}+\mathbf{4 0}+\mathbf{8}=\mathbf{2 8 8}$

Grid method

x	20	4	Total
10	200	40	240
2	40	8	48

Short multiplication

24
$\times \quad 12$
488
24
288

Long multiplication

	2	4	
X	1	2	
		8	(2×4)
	4	0	(2×20)
	4	0	(10×4)
2	0	0	(10×20)
2	8	8	

Multiply numbers up to 4 digits by a 2-digit whole number, using the formal written method of multiplication. Consolidate multiplying whole numbers and decimal numbers by 10,100 and 1000.

Moving to multiplying whole numbers by decimal numbers (up to 2 decimal places).
a) $23.4 \times 2=$

Multiply like whole numbers

b) $2.31 \times 12=$

Multiply like whole numbers

